Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors

Identifieur interne : 000122 ( Chine/Analysis ); précédent : 000121; suivant : 000123

Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors

Auteurs : RBID : Pascal:13-0255326

Descripteurs français

English descriptors

Abstract

"One key to one lock" hybrid sensor configuration is rationally designed and demonstrated as a direct effective route for the target-gas-specific, highly sensitive, and promptly responsive chemical gas sensing for room temperature operation in a complex ambient background. The design concept is based on three criteria: (i) quasi-one-dimensional metal oxide nanostructures as the sensing platform which exhibits good electron mobility and chemical and thermal stability; (ii) deep enhancement-mode field-effect transistors (E-mode FETs) with appropriate threshold voltages to suppress the nonspecific sensitivity to all gases (decouple the selectivity and sensitivity away from nanowires); (iii) metal nanoparticle decoration onto the nanostructure surface to introduce the gas specific selectivity and sensitivity to the sensing platform. In this work, using Mg-doped In2O3 nanowire E-mode FET sensor arrays decorated with various discrete metal nanoparticles (i.e., Au, Ag, and Pt) as illustrative prototypes here further confirms the feasibility of this design. Particularly, the Au decorated sensor arrays exhibit more than 3 orders of magnitude response to the exposure of 100 ppm CO among a mixture of gases at room temperature. The corresponding response time and detection limit are as low as ∼4 s and ∼500 ppb, respectively. All of these could have important implications for this "one key to one lock" hybrid sensor configuration which potentially open up a rational avenue to the design of advanced-generation chemical sensors with unprecedented selectivity and sensitivity.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0255326

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors</title>
<author>
<name>XUMING ZOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JINGLI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XINGQIANG LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHUNLAN WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YING JIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Sciences & Engineering, Zhejiang University</s1>
<s2>Zhejiang 310058</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Zhejiang 310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONG WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Sciences & Engineering, Zhejiang University</s1>
<s2>Zhejiang 310058</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Zhejiang 310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIANGHENG XIAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ho, Johnny C" uniqKey="Ho J">Johnny C. Ho</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JINCHAI LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHANGZHONG JIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YING FANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>National Center for Nanoscience and Technology</s1>
<s2>Beijing, 100190</s2>
<s3>CHN</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>National Center for Nanoscience and Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LEI LIAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0255326</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0255326 INIST</idno>
<idno type="RBID">Pascal:13-0255326</idno>
<idno type="wicri:Area/Main/Corpus">000964</idno>
<idno type="wicri:Area/Main/Repository">000617</idno>
<idno type="wicri:Area/Chine/Extraction">000122</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arrays</term>
<term>Chemical sensors</term>
<term>Chemical stability</term>
<term>Electron mobility</term>
<term>Field effect transistors</term>
<term>Gallium selenides</term>
<term>Gas detector</term>
<term>Gas sensors</term>
<term>Gold</term>
<term>Indium oxide</term>
<term>Magnesium additions</term>
<term>Nanoelectronics</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Selectivity</term>
<term>Silver</term>
<term>Thermal properties</term>
<term>Thermal stability</term>
<term>Voltage threshold</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Capteur de gaz</term>
<term>Réseau(arrangement)</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Nanoélectronique</term>
<term>Capteur chimique</term>
<term>Détecteur de gaz</term>
<term>Nanostructure</term>
<term>Mobilité électron</term>
<term>Stabilité chimique</term>
<term>Propriété thermique</term>
<term>Stabilité thermique</term>
<term>Transistor effet champ</term>
<term>Seuil tension</term>
<term>Séléniure de gallium</term>
<term>Oxyde d'indium</term>
<term>Or</term>
<term>Argent</term>
<term>Sélectivité</term>
<term>Nanofil</term>
<term>Addition magnésium</term>
<term>Substrat métal</term>
<term>In2O3</term>
<term>8107B</term>
<term>8535</term>
<term>0707D</term>
<term>6865</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">"One key to one lock" hybrid sensor configuration is rationally designed and demonstrated as a direct effective route for the target-gas-specific, highly sensitive, and promptly responsive chemical gas sensing for room temperature operation in a complex ambient background. The design concept is based on three criteria: (i) quasi-one-dimensional metal oxide nanostructures as the sensing platform which exhibits good electron mobility and chemical and thermal stability; (ii) deep enhancement-mode field-effect transistors (E-mode FETs) with appropriate threshold voltages to suppress the nonspecific sensitivity to all gases (decouple the selectivity and sensitivity away from nanowires); (iii) metal nanoparticle decoration onto the nanostructure surface to introduce the gas specific selectivity and sensitivity to the sensing platform. In this work, using Mg-doped In
<sub>2</sub>
O
<sub>3</sub>
nanowire E-mode FET sensor arrays decorated with various discrete metal nanoparticles (i.e., Au, Ag, and Pt) as illustrative prototypes here further confirms the feasibility of this design. Particularly, the Au decorated sensor arrays exhibit more than 3 orders of magnitude response to the exposure of 100 ppm CO among a mixture of gases at room temperature. The corresponding response time and detection limit are as low as ∼4 s and ∼500 ppb, respectively. All of these could have important implications for this "one key to one lock" hybrid sensor configuration which potentially open up a rational avenue to the design of advanced-generation chemical sensors with unprecedented selectivity and sensitivity.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XUMING ZOU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JINGLI WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XINGQIANG LIU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHUNLAN WANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YING JIANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YONG WANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>XIANGHENG XIAO</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HO (Johnny C.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>JINCHAI LI</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>CHANGZHONG JIANG</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>YING FANG</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>WEI LIU</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>LEI LIAO</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Sciences & Engineering, Zhejiang University</s1>
<s2>Zhejiang 310058</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Center for Nanoscience and Technology</s1>
<s2>Beijing, 100190</s2>
<s3>CHN</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA20>
<s1>3287-3292</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000503655690460</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0255326</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>"One key to one lock" hybrid sensor configuration is rationally designed and demonstrated as a direct effective route for the target-gas-specific, highly sensitive, and promptly responsive chemical gas sensing for room temperature operation in a complex ambient background. The design concept is based on three criteria: (i) quasi-one-dimensional metal oxide nanostructures as the sensing platform which exhibits good electron mobility and chemical and thermal stability; (ii) deep enhancement-mode field-effect transistors (E-mode FETs) with appropriate threshold voltages to suppress the nonspecific sensitivity to all gases (decouple the selectivity and sensitivity away from nanowires); (iii) metal nanoparticle decoration onto the nanostructure surface to introduce the gas specific selectivity and sensitivity to the sensing platform. In this work, using Mg-doped In
<sub>2</sub>
O
<sub>3</sub>
nanowire E-mode FET sensor arrays decorated with various discrete metal nanoparticles (i.e., Au, Ag, and Pt) as illustrative prototypes here further confirms the feasibility of this design. Particularly, the Au decorated sensor arrays exhibit more than 3 orders of magnitude response to the exposure of 100 ppm CO among a mixture of gases at room temperature. The corresponding response time and detection limit are as low as ∼4 s and ∼500 ppb, respectively. All of these could have important implications for this "one key to one lock" hybrid sensor configuration which potentially open up a rational avenue to the design of advanced-generation chemical sensors with unprecedented selectivity and sensitivity.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Capteur de gaz</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Gas sensors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanoélectronique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanoelectronics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Capteur chimique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Chemical sensors</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Détecteur de gaz</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Gas detector</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Detector de gas</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Stabilité chimique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Chemical stability</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estabilidad química</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Stabilité thermique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Thermal stability</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Field effect transistors</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Seuil tension</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Voltage threshold</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Umbral tensión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Addition magnésium</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Magnesium additions</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Substrat métal</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>245</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0255326
   |texte=   Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024